Lattice points in a rectangle

ثبت نشده
چکیده

Basically, what we can try to do is to take the Fourier transform of 1R (the indicator function for the set R), and then use Fourier inversion to show that for each shift t+L of the lattice L, this shift intersects the set R. Actually, it will not quite be enough to take the Fourier transform of just 1R, but instead we will need to work with a smoothed version of 1R in order to make the Fourier transform have the requisite “decay properties”. Basically, we will need that the Fourier transform of our function is in L. It turns out that the dual group R̂ is isomorphic to R, and that the additive characters χ : R → C take the form χ(~x) = e. Fourier transforms are then defined via

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Algorithm for Lattice Point Counting in Rational Polygons

We propose a simple algorithm for lattice point counting in rational polygons. A rational polygon is one whose vertices have rational coordinates. The algorithm decomposes a given polygon into right trapezoids and counts the number of lattice points in the right trapezoids. Each right trapezoid can be dissected into a rectangle and a right-angled triangle in the obvious way. The number of latti...

متن کامل

Counting Pairs of Lattice Paths by Intersections

Consider an r × (n − r) plane lattice rectangle, and walks that begin at the origin (south-west corner), proceed with unit steps in either of the directions east or north, and terminate at the north-east corner of the rectangle. For each integer k we ask for N k , the number of ordered pairs of these walks that intersect in exactly k points. The number of points in the intersection of two such ...

متن کامل

Maximal spanning time for neighborhood growth on the Hamming plane

We consider a long-range growth dynamics on the two-dimensional integer lattice, initialized by a finite set of occupied points. Subsequently, a site x becomes occupied if the pair consisting of the counts of occupied sites along the entire horizontal and vertical lines through x lies outside a fixed Young diagram Z. We study the extremal quantity μ(Z), the maximal finite time at which the latt...

متن کامل

Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

متن کامل

Osculating Paths and Oscillating Tableaux

The combinatorics of certain tuples of osculating lattice paths is studied, and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice, each path can take only unit steps rightwards or upwards, and two different paths within a tuple are permitted to share...

متن کامل

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011